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Mass evolution

The Simulation

Horizon-AGN (Dubois+16)
e 10 million CPU hours

* ~100h* CoMpc box length

 Minimum 1kpc resolution — 5 orders of

. 14s com 05|t
magnitude q p e

mock |mage |n u rz_-
» Cosmology corresponding to WMAP7 Ry "
results (Komatsu+ 2011)

* Hz-AGN Provides good agreement with
observations (Kaviraj+2017)
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Mergers as drivers of cosmic star formation

» Star-bursts often are observed in interacting systems...

* It's not clear that how often mergers trigger significant star-bursts or
how much of this star formation would have happened anyway

* Mergers were thought to be important drivers of star formation, but
observations have brought this into question recently (e.g. Stott+
2013; Lofthouse+ 2017).

@7
Arp 194 — HST

* Explained by cosmological accretion only?

* Cosmological simulations like Horizon-AGN, offer an alternative to
observational studies of mergers with some obvious advantages

Antennae P HS




Mergers as drivers of cosmic star formation

* Cosmological simulations like Horizon-AGN, offer an
alternative to observational studies of mergers

* Observational methods probe only a particular point in
time

- Galaxy pairs are not a reliable way of identifying
mergers (chance projection, fly-bys)

— Disturbed morphologies can also emerge from
secular / internal processes (e.g. Bournaud+ 2008;
Hoyos+ 2016), especially at high redshift

— Minor mergers do not produce strong tidal features D2 33576 [0.35 48259
(Kaviraj+ 2013) and are difficult to study (but as
important as major mergers!)

e G48850 11.U00 30509

e Simulations offer a more comprehensive picture '
GOODS / Elmgreen+2009



Mergers as drivers of cosmic star formation

Merger Enhancement

* SFR enhancement —

* merging vsS non-merging
populations (mean SFR over
the duration of the merger)

e Define the difference in sSFR
as the enhancement, &.

logo(SFR [ Mg yr' 1)

e Gas inflows during minor mergers can be
of similar magnitude to major mergers

* Ambient levels of SF are lower in the
local universe, allowing mergers to
produce more significant enhancements

3

10.0 105 11.0 11.5
log5(M-/M¢)



Mergers as drivers of cosmic star formation

The total SF contribution due to
mergers is given by:

Merger Budget Shaded region — Hopkins
and Beacom 2006

| TS

il ] 0.8}

fx SFRD

% 25 per cent of the cosmic star I w 0.6t
= s formation budget since z=4 is the \ A

; result of mergers @) 04 )
=

| Major mergers contribute only 10 : O 21
005 per cent - O 0

0.00Ls




BH growth

* (Observed) correlations between BH mass and various galaxy properties (e.g.
dispersion, stellar mass, bulge mass) suggest co-evolution of galaxies and their
BH.

- Common explanation — major mergers

» Much of the past literature has focussed on early-type (M.~Mg,,.) galaxies

 Recent studies have shown that BH — stellar mass correlation exists across the
whole galaxy population (e.g. Marleau+2013;Reines+Volonteri 15)

 If the same correlation exists for discs, where the bulk of stellar mass is likely to
be a result of secular processes it is not as easy to see how mergers are
responsible



BH growth

* Astringent test of this is to compare the BH masses of
bulge-less (B/T < 0.1) galaxies (which should be merger
free) with the general population (Simmons, Smethurst +
Lintott 2017)

1120257.81+045045.0

* Disk-dominated and bulge-less galaxies are offset from
the main locus of the BH — bulge correlation, but lie on (Simmons, Smethurst
thelBHl — Foltal Istle1lliar mgslslcorrelatlon and Lintott 2017)
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BH growth

* Bulge-disc decomposition (Volonteri+2016)

{Major mergers)

=
=

=
e

* We plot the average number of mergers since
z=1,2,3 as a function of B/T

=
=]

=3 - "
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 The assumption of no major mergers is good at T I
z=1 [ 1

* By z=3, ¥ of bulge-less galaxies are likely to
have undergone a major merger

— But accounting for < 15 per cent ex-situ mass
by z=0

{(Minor mergers})

B/T



BH growth

Bulge-less galaxies lie on the
same M_, —M, relation as the

general galaxy population.

The number of major (or minor)
mergers that a galaxy has
undergone does not alter a
galaxy’s position on the M_ —M,

relation

Mergers are not a significant
mechanism for feeding the BH.

Bulge-less galaxies lie offset from
the M,, Mg, relation.

The offset of the bulge-less
galaxies is driven by their having
under-massive bulges (due to a
smaller number of mergers).

logo(Mpr/Mz)
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BH growth

* Major mergers not a primary
driver of BH growth at any |
redshift. Lof

* Only ~35 per cent of the BH
mass in galaxies more massive osk
than 10 9.5 M In today’s ‘
Universe is directly attributable
to mergers.

L] I T Ll L] L] L] L) L] L L) I L} T LI LI L
= == Major Mergers

""" Minor Mergers
Major + Minor Mergers -

0.6

CDF

« ~22 per cent is driven by major
mergers and ~13 per cent is
driven by minor mergers.

 Secular processes, account for o2r
the creation of the majority (~65
per cent) of BH mass over the ok
lifetime of the Universe. S S




Conclusion

* |In general mergers contribute weakly to the star
formation budget and BH growth

* Mergers directly trigger ~25 per cent of stellar
mass growth over cosmic time, with major mergers

accounting for only 10 per cent

* Mergers trigger 35 per cent of BH growth, similar
to stellar mass growth



Part Ill: Spheroid Creation

The many paths to

spheroidal morphology

Many possible pathways to spheroidal
morphology:

Single major merger (violent relaxation)
(e.g. Springel+ 2005)?

- Are there enough?

Multiple minor mergers (instability driven)?

Environment (harassment etc.) (e.g.
Moore+ 1998)

Accretion (disk formation, accretion driven
turbulence) (e.g. EImegreen+ 2009)

Internal processes (density wave,
instabilities) (e.g. Zhang and Buta 2010;
Bae+ 2016)

NGC 5090 and
5091 — VLT




Spheroid creation

Disks dominate at high z (blue
points)

Population becomes more
spheroid dominated towards
present day (red points)



Spheroid creation

0sf T 0.4
Spheroids Discs
04l 1 0.2f ; 1
£ ..l £ oo} -
E 0.2 E
< oo} <02
-0.2F 10"« M./Mg<10"* 1 10"< MM, <10™*

* We define morphological change as : FRREREE FREERE
the fractional change in v/c between —
the beginning and end of the merger: I |

Amorph = V/oi=1 Gyr — V/or——1 Gyr s 02f _. .
1J/“r:—l Gyr At E oo E

e Spin up due to cosmological accretion 02
is an important effect, especially at oaf 10T MM 0T
early epochs. ' 2 8

0.4f ' —

* In the early universe (z > 2), stellar o2}
mass forms in discs more rapidly than & ool §
it can be removed by mergers. 5 oz E

i ) AT 4012 MM, <1075

* On average, major and minor mergers 1 e PR

increase dispersion in discs e i
o J— Major 0.2}
. . . 2 e NO MEIGEN 4

* The picture is more complicated for o T 1
spheroids, where there is already JEE O T S
considerable dispersion ! o4l FH

04T 0 MM, <1072 1 08l 10"5% M/Mg<10"
1 2 3 4 1 2 3 4

1+z 14z



Spheroid creation

A morph

A morph

08 0.6 < fpus < 0.9

A morph

142

A morph

A morph

A morph

-0.6

0.2
0.1

0.2

-0.3
-0.4

Discs
2 3 4
1+z
0.3 <f,;<0.6

4
14z
0.6 <f,;<0.9

Major
Minor
1o dispersion

2 3
14z

4

The outcome of a merger

Is a strong function of the
gas fraction of the

merging pair.

Mergers with higher gas 2
fractions are more likely

to produce remnants with
increased V/ao.

Low mass galaxies

remain fairly gas rich: At
later times and gas-rich
minor mergers may
become increasingly -
important for spinning up =
galaxies as cosmological
accretion declines

see also e.g. Springel
+05, Font +17
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Spheroid creation

02 | - i ' ' Tiom ]
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log; (M, /M. ) (final)
* The orbital configuration of a merger has * Alarger proportion of discs (at

z=0) have undergone prograde
mergers compared to spheroids
of a similar stellar mass.

a measurable impact on the properties of
the remnants.

* Mergers that are prograde produce « May link with large scale structure

smaller decreases in the spin of discs (i.e. e.g. Welker+2017...
milder morphological transformation) than « Still a small excess (few
retrograde mergers. percent) of prograde mergers

in galaxies that are discs when
they merge.



Spheroid creation

0.4

- - - * Spheroids have undergone
Spheroids (z=0) Discs (z=0)

more mergers on average
since z = 3 compared with
discs of equivalent stellar
mass.

Frrag,,

A morph

* The fraction of stellar mass
formed ex-situ (i.e. accreted

'0'41 5 3 4 'ﬂ'41 5 5 4 dlrectly_ via mgrgers_) is around
14z 1+2 1.5-2 times higher in

R e MM T ter ' ' ' 7 spheroids (at intermediate

1.0} B 100 MMe <105 1.0f .j masses only).

A 4 ': * The average morphological
08¢ 0.6 5 transformation induced per
04l 0.4k ] merger is around a factor of 2
0ol ool ] larger in disc .progenito_rs

' ' compared to in spheroid

ﬂ'ﬂtw 05 00 05 10 1.0 05 00 05 1.0 progenitors.

A morph A morph



logio(M, /Mz)  zof largest (i) ratio of largest (ii) # major (iii) # minor (iv) ex situ mass (v)

10.5_11.0 1.224(1.092)1939  2.864(2.485)1933%  1.1784+0.921  1.11841.063  0.412(0.401)+3-083
c L169(LO27) S0 32492719 sy 072620803 0816:40.872 0.201(0.176) 05
11.0.11.5 1.203(1.027)10488  2.815(2.367)1 0978 1.355£1.032  1.504-£1.185  0.542(0.533)-0078
L12100.968)10:50  3.244(2.679)7 1418 09460981  1.150£1.052  0.336(0.321)00e

11.5.12.0 1.235(1.092)13320  3.076(2.523)£0 480 1.217+1.114  1.548+1.246  0.609(0.597)+008]
s 0.901(0.632)02%3  2.210(2.099)*738  1.2384+0.921  1.714+1.201  0.536(0.555)* 3979

Massive discs and spheroids share
similar average merger histories -
Isolated histories are not the dominant
channel for the formation of discs

above a certain mass.



Spheroid creation

Low f_exsitu spheroids

* Most spheroids have high ex-situ mass
fractions, but a minority do not

 How are these galaxies, which have
extremely poor merger histories
transformed into spheroids

1.2

1.0

0.8

Massive Discs
* How exactly do massive discs (beyond
the knee of the mass function — logM* >
11.5) survive to the present day?
* Very difficult to form this much stellar
mass in-situ
e The majority of discs possess
significant fractions of stars formed from S r e ,
ex-situ sources (e.g. Faber+07) T T = 155
* Yet at logM* > 11.5, around 10% of log10(M+/Mo)
galaxies have significant disc components
(e.g. previous slides, Concellice+06) while
having roughly similar merger histories.

fexsitu
{v/o)

Jackson+2019 in prep



WHY DO MASSIVE DISCS
EXIST TODAY?

Every massive disc shows a
recent uptick in v/sigma
coincident with a gas-rich
merger

20 . 3
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o15F =
A8 N | d
= C | I
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§ 1 I | 1

0.0
1 2 3 4

Stellar masg

Compare the properties of the
last mergers in massive discs or
to a control sample of last G <
mergers in massive -

spheroids...

«—Ex-situ mass
. —=Gas masF




Normalised frequency

- Massive Discs -
= [____1Control Spheroids -
15F -
10F -
05F ™1 [T el
PN o P R U I P I O L
—-1.0 —-0.5 0.0 0.5 1.0
cos(el—mass: I—orb)

Jackson+19 in prep

Last mergers in
massive disks:

- Are more recent

- Have higher gas
fractions

- Bring in a higher
absolute mass of
gas

- Have slightly
higher mass ratios

- Show a slight
preference for
prograde and

coplanar orbits



Other questions to consider:

Do the mergers spin up the whole system or
create a new fast-rotating component?

If massive discs are relatively ephemeral, does
the frequency of extremely massive discs
correlate with gas fraction of the Universe?



Two typical low f_exsitu spheroids

Low mass ratio merger is followed by a

catastrophic and permanent fall in v/sigma

that lasts to the present day

* Typical remnants are relatively diffuse and
highly star forming

Typically triggers a prolonged period of in-
situ star formation in the remnant

These spheroids are above the star-
formation main sequence, which offers a
route to identifying such systems in
observations

Spheroids with SFRs well above the star
formation main sequence are known (e.g.
Fukugita et al. 2004; Schawinski et al. 2010)

Similar number fractions to our findings (a
few percent)
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* Sample of massive spheroids with low
exsitu mass fractions (f_exsitu < 0.3, log
M* > 11, no major mergers vs control
sample of massive galaxes

* No preference for different alignment in
galaxy spins

« Strong preference for mergers in the plane
of the disc
* which maximize the tidal forces and
therefore the transfer of orbital energy
(e.g. Cox et al. 2008)
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