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A brief history of ML techniques in astronomy
● Machine learning techniques have been developed for 

morphological classification since CCDs/plate digitization 
became widespread in astronomy beginning in the 1980s e.g. 
Kodaira+Watanabe (1984), Thonnat (1989).

● At this time, a lack of computer power or sophistication of 
technique meant that these solutions were unable to process 
even the relatively modest data-volumes seen at this time (< 
several GB)

● Perhaps the first truly successful application of ML to galaxy 
classification was by Lahav et al. (1995), who were able to 
efficiently classify ~14000 objects with similar accuracy to an 
expert human classifier

● However, ML techniques still did not become widespread, 
perhaps because did not offer any particular advantage over 
expert human classifications or later citizen science efforts like 
Galaxy Zoo (Lintott et al., 2008) , which offer high quality 
classifications for large numbers of galaxies Thonnat (1989) 



A brief history of ML techniques in astronomy

As they have become increasingly necessary due to large data 
volumes, a wide range of machine learning solutions have now been 
applied successfully to problems in astronomy:

● Huertas-Company et al. (2015) convolutional neural networks
 

● Ostrovski et al. (2017) supervised Gaussian mixture models

● Schawinski et al. (2017) generative adversarial networks

● Goulding et al. (2018) random forest classifier 

● Siudek et al. (2018) unsupervised Fisher expectation-maximisation 

● Roussi in prep Siamese networks ADS astronomy abstracts referencing 
“machine learning” by year



The problem
● Morphological classification -- what do our algorithms need to do?:

○ Separation of objects into Hubble type

○ Identification of objects of that share specific features (e.g. tidal 
tails, rings, shells and other LSB features)

○ Identification of rare objects, outliers or objects that don’t fit into 
established morphological types and for which there are no large 
existing samples (e.g. ring galaxies, certain LSB galaxies)

○ Separation of arbitrary morphologies and recovery of blended 
objects for which it would not be possible to construct training sets 
(e.g. low surface brightness objects overlapping other objects)

○ Identification of ‘junk’ not removed by the pipeline (e.g. satellite 
trails, ghosts etc), star / galaxy separation



Challenges

● Data volumes continue to grow due to the increasing area, 
depth, resolution and cadence possible with modern 
survey instruments:

○ Rapidly changing datasets mean we may need 
to classify data multiple times

○ Deep imaging makes looking for specific 
types of object laborious, preventing us from 
assembling comprehensive samples

○ Large area and higher resolution means more 
pixels need to be processed

LSST

SDSS

Desai (2019) 



(Martin et al., in prep)

(Bothun et al., 1997)

This is also regime where we expect a continuous tail of 
(resolved) low surface-brightness objects

SDSS-like completeness 
(simulated completeness with 
realistic mock images)

LSST-like completeness 
(target) -- close to 100% 
across whole range 
assuming perfect 
background subtraction

Challenges
As we probe lower and lower 
surface brightnesses, there is no 
indication from observations or 
simulations that the number of 
objects will begin to drop 

(Martin et al., 2019)



Challenges / requirements
● Customisable / general purpose

● And also efficient and scalable to large datasets

○ i.e. makes morphological classification feasible and fast for the any given use-case for individual 
researchers

● Allows for outlier detection

● Ideally applicable to arbitrary morphologies without the need for pre-labelled training data

● Not (too) reliant on human effort, which can be a significant bottleneck



 
● Human classification will become less and less viable as 

datasets grow 
○ e.g. billions of individual classifications required will make 

it intractable for LSST

● Machine learning techniques will soon be the only realistic 
solution, but face challenges of their own:

○ Repeated construction of unbiased training sets for high 
cadence (rapidly changing) data will be difficult

○ The large areas combined with deep imaging will allow the 
construction of samples of rare/faint types of object, but 
these object will not have robust training sets available 

● One solution is to combine citizen science with machine learning 
in order to continually improve training sets e.g. Beck et al. 
(2018), but very large data volumes will continue to be a 
challenge for any citizen science efforts

 
 
 

Solutions

Beck et al. (2018)



 
● Supervised machine learning uses labelled training sets to find a 

mapping between input and output (e.g. an image of a galaxy and a 
morphological type).

● Such techniques are accurate for focussed tasks (e.g. yes/no 
classifications, small number of morphological types), but rely on 
labelled training data

● This won’t work if we can’t assemble a large enough training set, 
which is difficult where very fine classification is desired or we are 
interested in rare types of object

○ It is impossible to identify objects for which no training set has 
been provided

● Since the assembly of training sets is now one of the most 
significant bottlenecks for all but the most basic classification tasks, 
we would ideally want to design a method that requires minimal 
human intervention and can efficiently reduce populations of objects 
into arbitrarily fine groups

 
 
 

Solutions

Labels



● Deep learning (e.g. Barchi et al., 2019) and unsupervised 
techniques (e.g. Hocking et al., 2018, Martin et al., 2020)  that 
can work directly on unlabelled data (without labelled training 
sets) can overcome some of the shortcomings of traditional 
supervised ML techniques

● Instead of optimising a network to recover provided labels, we try 
to find groups of similar objects within some parameter space

● Importantly, these techniques can be made to be more general 
purpose as they are not limited to finding only objects in a 
training set. They can produce instead data representations that 
can be manipulated and used in different ways

Solutions

McInnes et al.



● Polsterer, Gieseke & Kramer (2012) -- support vector machines (self 
organising map method) without feature extraction with limited training sets 

● Dai & Tong (2018) -- deep convolutional neural networks -- rely on large amounts 
of training data from galaxy zoo, limited to categories provided by galaxy zoo
 

● Kahn et al. (2019) -- deep learning applied to overlapping SDSS and DES data
  

● Hocking et al. (2018), Martin et al. (2020) -- Self organising map based 
unsupervised method 
 

● Cheng et al. (2019) -- unsupervised method using convolutional autoencoder for 
feature extraction rather than engineered features

Examples

Polsterer et al. (2012)

Cheng et al. (2019)

Kahn et al. (2019)

Labelled
U

nlabelled



Convert the survey images into a data matrix
– Extract patches at each non-zero pixel in a multi-band image
– Compute the radial power spectrum to produce rotationally invariant representations of each 
patch (encodes intensity, colour and ‘texture’)

ExamplesHocking+ (2018): MNRAS, 473, 1108
Martin+ (2020): MNRAS, 491,1408 
(arXiv:1909.10537)



Convert the survey images into a data matrix
– Extract patches at each non-zero pixel in a multi-band image
– Compute the radial power spectrum to produce rotationally invariant representations of each 
patch (encodes intensity, colour and ‘texture’)

Use GNG and HC to produce a condensed version of the original data set 
– Using the output patches, iteratively fit the data using growing neural gas 
to produce a topological map of sample vectors
– Each vector represents a group of similar patches
– By applying hierarchical clustering, we can further reduce the number of 
groups by reducing them to similar ‘types’ of patches

ExamplesHocking+ (2018): MNRAS, 473, 1108
Martin+ (2020): MNRAS, 491,1408 
(arXiv:1909.10537)



Convert the survey images into a data matrix
– Extract patches at each non-zero pixel in a multi-band image
– Compute the radial power spectrum to produce rotationally invariant representations of each 
patch (encodes intensity, colour and ‘texture’)

Use GNG and HC to produce a condensed version of the original data set 
– Using the output patches, iteratively fit the data using growing neural gas 
to produce a topological map of sample vectors
– Each vector represents a group of similar patches
– By applying hierarchical clustering, we can further reduce the number of 
groups by reducing them to similar ‘types’ of patches

Create object sample vectors corresponding to patch ‘types’
– Identify objects using connected component labelling
– Create a sample vector for each object, represented by a histogram of the different 
‘types’ of patches they are formed from
– Grouping similar sample vectors allows us to find visually similar objects

ExamplesHocking+ (2018): MNRAS, 473, 1108
Martin+ (2020): MNRAS, 491,1408 
(arXiv:1909.10537)



Convert the survey images into a data matrix
– Extract patches at each non-zero pixel in a multi-band image
– Compute the radial Fourier-transform to produce rotationally invariant representations 
of each patch

Use GNG and HC to produce a condensed version of the original data 
set 
– Using the output patches, iteratively fit the data using growing neural 
gas to produce a topological map of sample vectors
– Each vector represents a group of similar patches
– By applying hierarchical clustering, we can further reduce the number 
of groups by reducing them to similar ‘types’ of patches

Create object sample vectors corresponding to patch ‘types’
– Identify objects using connected component labelling
– Create a sample vector for each object, represented by a histogram of the 
different ‘types’ of patches they are formed from
– Sample vectors are weighted by tf*idf (term frequency-inverse document 
frequency)

Condensed version:

Use clustering techniques (growing neural gas & hierarchical 
clustering) to create a library of pixel ‘types’ based on colour, 
intensity and ‘texture’

Produce histogram descriptions (‘feature vector’) of objects that 
describe the frequency of each pixel type in that object

https://github.com/garrethmartin/HSC_UML

ExamplesHocking+ (2018): MNRAS, 473, 1108
Martin+ (2020): MNRAS, 491,1408 
(arXiv:1909.10537)



ETG

S0/Sa

Disc

Mi

Classifications based on 
visual inspection of a 
small subset of each 
group produce expected 
relations

Martin et al. (2020)

Examples - Classification by Hubble type (HSC data)

Martin+ (2020): MNRAS, 491,1408 
(arXiv:1909.10537)



Shells

LSB discs

Clum
py discs

Some more examples of individual 
clusters featuring rare/specific types of 
object

(i.e. groups of object with similar feature 
vectors)

Rings / accretion 
events

Examples - Arbitrary classification by clustering

Martin+ (2020): MNRAS, 491,1408 
(arXiv:1909.10537)



Target

Target image

More similar Most similar objects

Similarity searches allow us to auto-detect 
specific features within galaxies e.g. tidal 
features, based on a target object (or objects) 
and identify feature archetypes within blended 
objects
 
Searching for the nearest feature vectors 
allows us to produce a library of similar 
objects

Examples - Classification by visual similarity

Martin+ in prep.



Summary

● Data volumes continue to grow as the area, depth, resolution and cadence of astronomical surveys 
continues to increase

○ Now becoming intractable for citizen science initiatives

● Deep surveys like LSST will allow us to more finely classify galaxies than we have been able to before
○ But it will not be possible to produce training sets for every category of object

● For supervised machine learning, the creation of training sets will be a significant bottleneck

● Unsupervised machine learning can offer a number of benefits over supervised methods in terms of their 
scalability and ability to arbitrarily classify objects without the need for labelled training data

● Unsupervised techniques do not just produce classifications -- they can also be used to create usable 
descriptions of each object which we can manipulate in various ways (Martin+ (2020) MNRAS, 491,1408) 


